Skip to main content

Transition of 2D chemistry-based supercapacitor electrode material from proof of concept to applications

The Project

Supercapacitor (SC) is an electrical energy storage device with high energy density (comparable with rechargeable batteries), very fast charging/discharging, and high durability (sustaining millions of charging/discharging cycles with apparent loss of their capacities). We aim at increasing the energy density of SC beyond 50 Wh/L, which will lead to a paradigm shift in electrical energy storage technologies.

We utilize highly nitrogen doped graphene material (SC-GN3) offering energy density up to 200 Wh/L at a power of2.6 kW/L, 170 Wh/L at 5.2 kW/L, and 143 Wh/L at 52 kW/L and oppening doors to such technologies.

Our international team is developing SC prototypes, which manufacturing adhere to industry standards of leading SC manufacturers.

EIC Transition project entitled “Transition of 2D chemistry-based supercapacitor electrode material from proof of concept to applications” (TRANS2DCHEM) is funded by European Union.

Project duration

September 1st 2022 – August 31st 2025

Total cost

€ 2 485 717

EU contribution

€ 2 485 717

Trans2Dchem
12. 10. 2023

Networking at PCNS 2023

2023 PCNS Passive Components Networking Symposium hosted by SDU University in Sønderborg 11-14th September, 2023 discussed latest news, market and technology trends in passive electronic components. Attendees from 13 countries in…
Trans2Dchem
10. 7. 2023

Supercapacitors must be powerful yet environmentally friendly

After the Olomouc kick-off meeting, another crucial meeting of partners of the European Innovation Council (EIC) TRANS2DCHEM project took place in mid-June in Italy. The participants evaluated the progress in the preparation…
Trans2Dchem
24. 2. 2023

CZEDER 2023

The Prague Technology Centre in cooperation with the Ministry of Education and Science organized the traditional conference Czech Days for European Research (CZEDER 2023) on 14 February 2023. We participated…
View All Posts

Scientific background

Powering a diverse range of modern portable electronic devices and securing safe operation of big data centers and networks for the ‘internet of things’ are becoming an urgent need that influences our daily lives.

However, the ever-increasing demand for energy storage devices with improved performance and stability in all the above-mentioned sectors as well as in transportation (electric vehicles), grid storage (large energy storage and power levelling), electronics in space applications (satellites, new missions), and implanted medical devices (e.g., implantable cardioverter defibrillators, pacemakers) is motivating the scientific community to develop new chemistries, compositions, and morphologies of electrode materials.

Currently, rechargeable lithium-ion batteries (LIBs)—the most widely used electrochemical energy storage system of today—are used only in a limited number of applications because of power densities and fire safety issues. For example, electric vehicles will benefit from energy storage devices with high charging/discharging rate capabilities (power density) for acceleration or for energy management (recharging during vehicle braking).

More info

Project Team