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A B S T R A C T   

Fluorographene exhibits a rich chemistry and a wide range of applications in energy storage devices. This review, 
which is based on our lab results acquired in the last decade, explores the synthesis, properties, and performance 
of fluorographene-based materials in supercapacitors and batteries. Fluorographene can be prepared through 
mechanical or chemical delamination of graphite fluoride, allowing for scalable synthesis and further chemical 
processing. The chemical versatility of fluorographene enables a wide portfolio of chemical reactions, leading to 
a new class of graphene derivatives. Graphene acid, a product of fluorographene chemistry, exhibits excellent 
specific capacitance, cycling stability, and rate capability. Hybridizing graphene acid with metal-organic 
frameworks can achieve even higher energy and power densities. Furthermore, nitrogen-doped graphene 
derived from fluorographene demonstrates remarkable capacitive behavior, making it an efficient electrode 
material for supercapacitors. Additionally, fluorographene-based materials, such as graphene acid, graphene- 
sulfur hybrids, and graphene-based anodes, have exhibited outstanding performance in lithium-ion and 
lithium-sulfur batteries. The scalable synthesis, high performance, and versatility of fluorographene-derived 
materials render them attractive for practical energy storage applications. The unique properties and wide 
range of chemistries offered by fluorographene chemistry open new possibilities for improving advanced energy 
storage devices.   

Introduction 

Graphene derivatives have shown great potential as favorable sub-
stances for energy storage purposes, particularly in the realm of super-
capacitors and materials utilized in battery electrodes. However, the 
direct preparation of graphene derivatives from graphene is hindered by 
the high chemical inertness of graphene. This calls for alternative 
pathways leading to graphene derivatives. One possible solution is the 
utilization of fluorographene chemistry, which can be carried out under 
mild and controllable conditions (Chronopoulos et al., 2017). Further-
more, the chemistry of fluorographene benefits from a readily available 
pristine material, graphite fluoride. This material is available in tons on 

the market as an industrial lubricant and primary battery electrode 
material. So far, various graphene derivatives have been prepared using 
fluorographene chemistry. These derivatives dispose various promising 
properties, which can be utilized in sensing, imaging, single-atom 
catalysis, and energy storage devices, including supercapacitors and 
batteries. 

Fluorographene 

Fluorographene, which was discovered in 2010, can be prepared i) 
up-down by mechanical or chemical delamination of graphite fluoride 
and ii) bottom-up by fluorination of graphene. Particularly the chemical 
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exfoliation is suitable for upscaling fluorographene synthesis and further 
chemical processing (Fig. 1a). As a perfluorinated hydrocarbon labeled 
as a two-dimensional Teflon counterpart (Nair et al., 2010), it was 
considered unreactive due to the strength of the carbon-fluorine bond, 
which is regarded as one of the strongest single chemical bonds. The C-F 
bonds on tertiary carbon atoms, which make the backbone of fluo-
rographene, are considered an Achilles heel of fluorocarbons. In addi-
tion, real fluorographene samples contain radical defects (Medveď et al., 
2018), which are strong electrophiles and trigger a rich chemistry of 
fluorographene, leading to a broad portfolio of surface functionalized 
graphenes (Matochová et al., 2018). 

As depicted in Fig. 1b, fluorographene can undergo a wide portfolio 
of chemical reactions primarily based on defect-induced nucleophilic 
substitution (Matochová et al., 2018; Bakandritsos et al., 2017; Tuček 
et al., 2017; Tantis et al., 2021; Urbanová et al., 2015; Whitener et al., 
2015; Vermisoglou et al., 2019; Vermisoglou et al., 2021; Zhao et al., 
2019). Fluorographene reacts with Grignard reagents (Chronopoulos 
et al., 2017a; Mazánek et al., 2017) and chemicals formed during 
Friedel-Crafts (Lai et al., 2018), Suzuki-Miyaura (Huang et al., 2021), 
Sonogashira (Chronopoulos et al., 2019), and Bingel-Hirsch-type re-
actions (Bakandritsos et al., 2018). The nitrogen doping of graphene 
lattice can also be achieved by fluorographene chemistry due to the 
healing of introduced vacancies with nitrogen species (Zoppellaro et al., 
2019; Zaoralová et al., 2020; ̌Sedajová et al., 2022). In addition, fluorine 
atoms in partially fluorinated graphene may promote cycloaddition re-
actions. This was initially observed with dichlorocarbene inducing 
cyclopropanation on fluorographene (Lazar et al., 2015), followed by 
the Diels-Alder reaction for s-cis-dienes binding to the graphene surface 
(Barès et al., 2019). One (Chronopoulos et al., 2020) or two-step (Barès 
et al., 2019) double functionalization of fluorographene was also suc-
cessfully achieved. Fluorographene chemistry always includes two 
channels, one causing fluorographene defluorination toward sp2 car-
bons and the other leading to fluorine replacement by another func-
tional group (Matochová et al., 2018). Therefore, the as-prepared 
graphene derivatives are conductive (due to an established network of 
conjugated sp2 carbons) and homogeneously surface-functionalized 
graphenes on both sides, reaching degrees of functionalization from a 

few up to dozens of percent. This unique, scalable, and well-controllable 
chemistry represents a vivid strategy for achieving chemically 
well-defined graphenes. From the industrial point of view, it must be 
emphasized that the synthesis and the resulting graphene derivatives are 
well reproducible (Šedajová et al., 2020), and some of them are already 
marketed (see graphene-derivatives.com). 

The utilization of fluorographene chemistry as a tailored way to 
prepare novel graphene-based materials aligns with Regulation of 
Hazardous Substances (RoHS) directives (RoHS Directive - European 
Commission, 2022) if any of the used chemicals in the entire chemical 
process, including precursors, are not restricted under RoHS. The pro-
cess is also more environmentally friendly compared with other pro-
cesses, leading to graphene doping or functionalization. Operating 
mainly under mild conditions and low temperatures (<150 ◦C) 
(Zaoralová et al., 2020), the synthetic protocols involve low energy 
consumption and prevent the generation of hazardous gases. Moreover, 
most synthetic protocols are metal-free and devoid of heavy metal 
contaminants (Chronopoulos et al., 2017b; Hrubý et al., 2022a); their 
adaptability allows for the use of non-toxic solvents or facilitates the 
utilization of high-toxicity solvents with a possibility for closed-loop 
systems for recycling. The reproducibility of these materials also un-
derscores the reliability of the fluorographene chemistry and offers 
considerable potential for scale-up productions (Bakandritsos et al., 
2017; Šedajová et al., 2020; Obraztsov et al., 2022). For the subsequent 
use of these materials in electronic devices, significant efforts have been 
made to replace toxic and flammable electrolytes in batteries and 
supercapacitors and avoid using heavy and critical elements (Vermiso-
glou et al., 2021; Zaoralová et al., 2020; Titirici, 2021; Cavers et al., 
2022). The end products resulting from fluorographene chemistry, 
comprised of naturally abundant elements, emerge as promising con-
tenders due to their outstanding performance and as a significant stride 
towards a complete dedication to sustainable practices. It is worth 
noting, however, that a comprehensive Life Cycle Assessment (LCA) of 
fluorographene chemistry, which thoroughly evaluates the environ-
mental impacts of products and processes across their entire life cycle, 
has not been published to date. 

Fluorographene is a wide electronic gap semiconductor with a 

Fig. 1. Schematic depiction of fluorographene production by graphite fluoride exfoliation (a) and its reactivity offering variously functionalized graphene derivatives 
(b). Numbers in brackets refer to the literature as listed in the references. 
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predicted electronic band gap of 7.1 eV (Dubecký et al., 2020) and an 
experimentally determined optical band gap of 5.75 eV (Hrubý et al., 
2022b), which corresponds to the predicted value of 5.92 eV (Karlický & 
Otyepka, 2014) for the perfect structure of fluorographene. The elec-
tronic band gap is the energy difference between the top of the valence 
band and the bottom of the conduction band. The optical band gap, on 
the other hand, corresponds to the lowest energy dipole-allowed tran-
sition observable in absorption spectra. The optical band gap usually has 
lower energy than the electronic band gap due to the electrostatic 
binding between the excited electron and hole, forming an exciton. 
Fluorographene displays a high exciton binding energy of 1.9 eV (Kar-
lický & Otyepka, 2014). It should be noted that defects in the fluo-
rographene structure cause a formation of mid-gap states responsible for 

absorptions at significantly lower energies and fluorographene fluores-
cence (Hrubý et al., 2022b). Such optoelectronic properties of fluo-
rographene may be tunable, making it applicable in short-wavelength 
optical applications, power electronics, and high-temperature elec-
tronics (Morkoç et al., 1994). 

Graphite fluoride, i.e., fluorographene pristine material, is used as 
electrode material in lithium primary batteries (Nakajima, 2013). 
Exfoliated graphite fluoride and fluorographene materials have been 
investigated as cathode materials for lithium batteries (Sun et al., 2014; 
Wang et al., 2019) and sodium primary batteries (Li et al., 2023). 
Alongside battery research, supercapacitors are intensively explored 
energy storage devices. In this field, fluorographene nanosheets have 
been identified as a potential supercapacitor electrode material (Lv 

Fig. 2. (a) GCD profiles depicting the behavior of GCEs modified with fluorographene subjected to hydrogen treatment at 450 ◦C for varying durations. (b) 
Exploration of the relationship between specific capacitance and time of fluorographene treatment. (c) GCD profiles illustrating the response of the FG-20H sample to 
current densities. (d) Investigation into the impact of current density on the FG-20H specific capacitance. The contour plot (e) revealing the interplay between 
specific capacitance, fluorographene treatment time, and diverse current densities. (f) Assessment of FG-20H life-time stability within a three-electrode setup. The 
experiments were realized using a 1 M Na2SO4 aqueous electrolyte. Reproduced from the reference (Petr et al., 2019), The Royal Society of Chemistry, copy-
right 2019. 
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et al., 2019). However, the insulating properties of fluorographene 
hinder its direct application as supercapacitor electrode material. 
Therefore, the chemical derivatization of fluorographene towards 
higher sp2 carbon content makes it a more efficient supercapacitor 
electrode material (Bakandritsos et al., 2019). 

Derivatized fluorographene as supercapacitor electrode material 

Higher efficiency of derivatized fluorographene in supercapacitors 
was demonstrated on partially isothermally reduced fluorographene at 
450 ◦C, which was prepared in a reducing atmosphere of hydrogen. The 
final composition, i.e., carbon sp2/sp3 ratio, of the partially reduced 
fluorographene was fine-tuned by thermal treatment time. Among the 
set of prepared and tested samples, the highest performance was ach-
ieved with the fluorographene sample after 20-hour thermal treatment 
(FG-20H sample, Fig. 2a and b). The optimized material demonstrated 
very high specific capacitance values of 539 F/g (Fig. 2c–e) at 0.25 A/g 
current density. In a three-electrode setup (Fig. 2f), it also exhibited high 
cycling durability, retaining 100 % of its specific capacitance after 1500 
cycles and maintaining 96.7 % of its specific capacitance after enduring 
30,000 cycles in a two-electrode configuration (Petr et al., 2019). 

Graphene acid is a well-described, standardized, and already avail-
able product of fluorographene chemistry on the market. The graphene 
acid is produced through a two-step synthesis via a cyanographene in-
termediate. It bears ~12 % of carboxyl groups covalently grafted on 

both surface sides homogeneously (Bakandritsos et al., 2017). It is a 
conductive (~25 S/m), perfectly water-dispersible, and nontoxic ma-
terial, making it an excellent candidate for supercapacitor electrodes. 
This has been demonstrated by assembling a two-electrode symmetric 
capacitor cell from an aqueous suspension of graphene acid and aqueous 
1 M H2SO4 as an electrolyte (Šedajová et al., 2020). Such a system 
manifested only a slow decline in specific capacitance with the rising 
current density after scanning its GCD responses across a wide range of 
current densities (Fig. 3a and b). This behavior was also stable over 
several cycles with varying current densities as a part of the rate test 
(Fig. 3c). Further experiments at 3 A/g concluded that graphene acid 
demonstrated a capacitance of ~100 F/g and high stability of specific 
capacitance (> 95 %) after 60,000 GCD cycles in a two-electrode setup 
(Fig. 3d) (Šedajová et al., 2020; Heng Cheong et al., 2019). Meeting the 
energy or power requirements for practice, the supercapacitors were 
connected in parallel or in series, respectively, to extend both voltage 
window and capacitance performance (Fig. 3e and f). 

Combining graphene acid with a metal-organic framework (MOF) 
materials further enhances its performance (Jayaramulu et al., 2021). 
When graphene acid is hybridized with amine-terminated MOF, the 
resulting hybrid material serves as an efficient charge storage nano-
material, exhibiting a capacitance of 650 F/g. This hybrid system works 
well as the positive electrode in an asymmetric capacitor, paired with a 
Ti3C2Tx MXene opposing electrode and 1 M Na2SO4 as the electrolyte. 
Such a system demonstrates an impressive energy density of 73 Wh/kg 

Fig. 3. (a) Galvanostatic charge–discharge (GCD) behavior of graphene acid (GA) within a dual-electrode arrangement, investigated over a broad spectrum of 
current densities. (b) Analysis of the specific capacitance as it reacts to escalating current density increments. (c) Examination of the robustness of GA performance 
under varying current densities, assessing its rate stability. (d) Assessment of the long-time stability of GA over a span of 60,000 cycles; inset illustrates the initial and 
final ten cycles at a potential range of 1 V (measured in − 0.35‒0.65 V range). (e) Evaluation of the operational efficiency of two supercapacitor cells, each utilizing 
GA, explored both in serial or parallel configurations. (f) Testing of two supercapacitor cells integrated with GA and connected in series demonstrated through an LED 
experiment. All experiments were performed utilizing a 1 M H2SO4 aqueous electrolyte. Reproduced from reference (Šedajová et al., 2020), MDPI, copyright 2020. 
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and a power density of 16 kW/kg (Jayaramulu et al., 2021). These 
values are close to those of commercial devices like nickel-metal hydride 
and lead-acid batteries. Even after undergoing 10,000 cycles at an in-
termediate loading level, the device keeps 88 % of capacitance (Fig. 4). 

Nitrogen-doped graphenes obtained by reducing fluorographene 
using nitrogen-containing compounds represent another fascinating 
class of materials highly suited for supercapacitor electrodes (Zoppel-
laro et al., 2019; Zaoralová et al., 2020; Šedajová et al., 2022). Among 
them, GN3 (prepared by the reaction of fluorographene with sodium 
azide) stands out as a nitrogen-doped graphene with exceptionally high 
levels of nitrogen (~16 %) and containing diamond-like bonds. 
Compared with graphite, it has a higher density of 2.8 g/mL (Šedajová 
et al., 2022). This unique material exhibits unprecedented capacitive 
behavior. When utilized as active material in a symmetric capacitor, 
paired with an ionic liquid electrolyte (1-ethyl-3-methylimidazolium 
tetrafluoroborate, EMIM-BF4, and 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetra-
fluoropropyl ether (TTE) in a 9 : 1 ratio), it displays remarkable volu-
metric energy density (200 Wh/L) and power density (52 kW/L) while 
maintaining excellent cycling stability (Fig. 5). Since such values are 
record among the high-performance supercapacitor materials (Fig. 6), 
commercialization of the nitrogen-doped graphene (labeled as SC-GN3) 
is under development with the support of the EIC Transition project 
(trans2Dchem.com) funded by the European Union. The qualification of 
the initial prototypes, featuring both wound (cylindrical) and pouch 
geometries, is scheduled for 2024. 

Fluorographene-derived materials as Li battery electrodes 

The effectiveness of materials derived from fluorographene has also 
been demonstrated in lithium batteries as efficient electrode materials. 
In the case of graphene acid, its carboxylic groups can reversibly bind 
lithium ions, making it a promising high-energy anode. Experiments 
have revealed that the graphene acid anode exhibits exceptional charge 
transport, Li intercalation properties, and redox activity at the single- 

layer level while maintaining the electrode stability (Fig. 7). This 
behavior surpasses all previously reported organic anodes, incorpo-
rating commercial graphene and nanoplatelets of graphene (Fig. 8) 
(Obraztsov et al., 2022). With a practical capacity of 800 mAh/g (0.05 
A/g) and a rate capability of 174 mAh/g (2.0 A/g), the graphene acid 
anodes demonstrate their true potential in advanced lithium-ion 
batteries. 

The chemistry of fluorographene also enables the covalent conju-
gation of graphene with polysulfide chains, resulting in the development 
of polysulfide covalently-interlinked graphene (GPS). This remarkable 
material exhibits exceptional potential as a Li-sulfur battery cathode 
nanomaterial due to its outstanding characteristics. The GPS cathode 
depicts a high full-cathode-mass capacity and rate ability, coupled with 
excellent cycling stability, effectively addressing the challenges associ-
ated with the shuttling effect (Tantis et al., 2021). Cathodes composed of 
90 % GPS, 5 % conductive additive, and 5 % binder were evaluated 
against metallic lithium in a Li bis(trifluoromethanesulfonyl)imide 
(LiTFSI) electrolyte dissolved in dioxolane and tetraethylene glycol 
dimethyl ether (DOL:TTE) mixture. The CD process of this Li-S system 
exhibited excellent reversibility (Fig. 9a), demonstrating two discharge 
plateaus with capacities of 418 mAh/g and 1254 mAh/g using a specific 
0.1 C current (Fig. 9b). The electrochemical profiles during galvano-
static charge/discharge were maintained over 50 cycles at a specific 
current of 0.1 C (Fig. 9c), highlighting the high electrochemical 
reversibility of the GPS cathode. The GPS material exhibited exceptional 
stability at high and low specific currents, retaining initial capacities 
above 470 mAh/g even after 500 cycles at 1 C current (Fig. 9d). More-
over, the GPS cathode achieved capacities of 485 mAh/g at 1 C and 290 
mAh/g at 2 C (Fig. 9e). Compared to noncovalent graphene-sulfur (GS) 
derivatives, the GPS cathode outperformed them, exhibiting superior 
stability compared to other sulfur-based materials investigated for 
lithium-sulfur batteries. The stability of GPS over GS is further evi-
denced by the absence of elemental sulfur in the separator after 250 
cycles. In contrast, sulfur was observed in the GS sample after only 45 

Fig. 4. The electrochemical behavior of the GA@UiO-66-NH2/Ti3C2Tx asymmetric supercapacitor was subjected to evaluation using a 1 M Na2SO4 electrolyte. The 
analysis included: (a) GCD profiles recorded under diverse current densities. (b) Exploration of the relationship of specific capacitance vs. current density. (c) A 
comparison of the device’s performance through a Ragone plot against other asymmetric systems. (d) Assessment of life-time stability through a 10,000-cycle ex-
amination at 5.2 A/g and Coulombic efficiency assessment. The figure was reproduced from the ref. (Jayaramulu et al., 2021), John Wiley and Sons, copyright 2021. 
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Fig. 5. Electrochemical analysis of a symmetrical supercapacitor configuration utilizing GN3 electrodes. (a) Cyclic voltammograms in EMIM-BF4 and TTE (9 : 1) 
electrolyte. (b) GCD curves recorded at different current densities. (c) Energy density and power density of GN3 electrodes. (d) Comparative study pitting the GN3 
cell against symmetrical cells constructed with commercially available high surface area carbon materials (2 A/g), and (e) parameters of the devices. (f) Demon-
stration of life-time stability for GN3 under 20 A/g current density. The figure was reproduced from the ref. (Šedajová et al., 2022), The Royal Society of Chemistry, 
copyright 2021. 

Fig. 6. (a) Compared to electrodes crafted from commercial 2000 m2/g active carbon and notable counterparts sourced from literature, handpicked for their 
promising attributes, GN3 electrodes achieve higher energy and power density output. These analogs include holey graphene (holey G) (Sun et al., 2014), dense 
MEGO (compressed, microwave expanded, and activated reduced graphene oxide) (Wang et al., 2019), tri-doped carbon (Li et al., 2023), densified G (capillary 
densified graphene) (Lv et al., 2019), ultrathick graphene (Bakandritsos et al., 2019), 1T-MoS2 (Petr et al., 2019), and EGM-GO (exfoliated graphene-mediated 
graphene oxide) (Heng Cheong et al., 2019). (b) When considering a GN3 mass loading of 10 mg/cm, the specific capacitance in a symmetric cell reaches 99 % 
of the recorded capacitance from a mass loading of 1 mg/cm. GN3 electrode coin cells on aluminum foils, both prior (c) and after assemblage (d). The constructed cell 
successfully powered a 4 V LED. The figure was reproduced from the ref. (Šedajová et al., 2022), The Royal Society of Chemistry, copyright 2021. 
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cycles (Fig. 9f). The lasagna-like structure of GPS prevented the sulfur 
shuttling effect, which typically stands behind a low cyclability of Li-S 
batteries (LSBs). 

Conclusions and perspectives 

Fluorographene chemistry offers an industrially scalable process that 
leads to a new class of densely homogeneous and surface-functionalized 
graphenes. These materials exhibit immense versatility for a broad range 
of energy storage applications, containing, for instance, supercapacitors 

and batteries. Among supercapacitor electrodes, GN3 stands out with its 
exceptional energy and power densities, making it an up-and-coming 
candidate for the transition of graphene supercapacitor devices into 
real-world applications soon. On the other hand, graphene acid, the 
most versatile among fluorographene-derived materials, exhibits 
excellent capacitive behavior in a simple system of aqueous sulfuric acid 
electrolytes, offering a cost-effective and eco-friendly alternative. The 
capacitive abilities of graphene acid can be further enhanced through 
hybridization with metal-organic frameworks (MOFs), opening up new 
routes for improved energy storage performance. Additionally, gra-
phene acid exhibits remarkable potential as a high-energy content anode 
in organic lithium batteries, thanks to its reversible reaction with 
lithium ions, leading to significant performance enhancements. Lastly, 
owing to its interlinked graphene superstructure character, GPS material 
may serve as an unprecedent cathode material in Li-S batteries, over-
coming the sulfur shuttling effect and retaining high capacity over time. 
Overall, the tested fluorographene-derived materials have proven to be 
highly efficient electrode materials for applications related to energy 
storage. Given the elegance of fluorographene chemistry, we anticipate 
the emergence of more fluorographene-derived materials, expanding 
the possibilities in energy storage devices and further pushing their ef-
ficiency limits. 
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draft. Radek Zbořil: Conceptualization, Writing – original draft. Michal 
Otyepka: Conceptualization, Funding acquisition, Supervision, Writing 
– original draft, Writing – review & editing. 

Fig. 7. Electrochemical evaluation of graphene acid in a half-cell versus lithium includes the following tests: (a) Assessment of rate capability; (b) The 10th CD curve 
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