

CATRIN Czech Advanced Technology and Research

Institute

Unleashing the Power: **Superior Properties of** Fluorographene-Derived Materials for Energy Storage **Applications**

Michal Otyepka

IT4INNOVATIONS NATIONAL SUPERCOMPUTING CENTER OF OSTRAV

Czech Advanced Technology and Research Institute

Palacký University Olomouc

Est. 1573 8 faculties 1 research unit (CATRIN)

CATRIN-CRH Biotechnologies, Agriculture

Graphene is 2D carbon material prepared by graphite exfoliation (Geim, Novoselov 2004)

2D Materials

- Graphene 2004 by Novoselov and Geim
- Wide family of 2D materials
 - One element
 - C: graphene, P: phosphorene, ...
 - More elements
 - graphene derivatives graphane (C_xH_x), fluorographene (C_xF_x), graphene oxide
 - graphene analogs hBN
 - G-C₃N₄
 - MXenes (Ti₃C₂ ...)
 - transition metal chalcogenides (MoS₂ ...)
 - transition metal oxides and hydroxides (TiO₂, ... Ni(OH)₂)
 - 2D zeolites
 - 2D MOFs, COFs

Fluorograhene (discovered in 2010)

Mechanical exfoliation of graphite fluoride Nair RR *et al.* Small 6, 2877 (2010)

Chemical exfoliation of graphite fluoride Zbořil R *et al.* Small 6, 2885 (2010)

Fluorination of graphene Robinson JT *et al.* Nano Letters 10, 3001 (2010) Cheng SH *et al.* PRB 81, 205435 (2010)

ACS Nano 7, 6434, 2013 Appl. Mater. Today, 9, 60, 2017

Fluorograhene reacts at mild conditions

elimination + substitution

reaction is triggered by point defects, which behave like el-philes

leads to graphene derivatives with a high degree of functionalization 2-20 at. %

doped graphenes can also be prepared

Nanoscale 10, 4696, 2018 J. Phys. Chem. Lett. 9, 3580, 2018 ACS Sustainable Chem. Eng., 8, 4764, 2020

Appl. Mater. Today, 9, 60, 2017 [refs therein]

Applications explored in our lab for graphenederivatives

Adv. Mater. 2019, 31, 1900323 Green Chemistry 2019, 21, 5238 *Chem. Sci.* **2019**, 10, 9438 ACS Appl. Mater. Interfaces 2020, 12, 250 *Adv. Mater. Int.* **2021**, 2001392 Small 2021, 17, 2006477 Nature Commun. 2023, 14, 1373

Biosens. Bioelectron, 2020, 166, 112436 ACS Omega 2019, 4, 19944 *Biosens. Bioelecron.* **2017**, 89, 532 Sensing Biosens. Bioelecron. 2021, 195, 113628 Green Chem. 2023, 25, 1647 Small 2023, in press

Antibacterial mat.; Adv. Sci. 2021, 2003090

Catalysis

Nano-bio interface

maitre

Environment

Detox-monitoring

ACS Nano 2021, 15, 3349

Small 2022, 18, 2201003

erc erc erc Spin control Nat. Commun. 2017, 8, 1 ACS Nano 2018, 12, 12847 Nat. Commun. 2018, 9, 1 Adv. Mater. 2019, 31, 1902587 ACS Appl. Mater. Interfaces 2020 12, 34074, 2020

De

Fe^{2+/3+}

Supercaps

erc

Adv. Mater. 2018, 30, 1705789 Adv. Funct. Mater. 2018, 28, 1801111 Adv. Fun. Mater. 2019, 27, 1906998 Chem. Mater. 2019, 31, 4698 J. Mater. Chem. A 2020, 8, 25716 Adv. Mater. 2021, 33, 2004560 Env. En. Sci. 2022, 15, 740

200 Wh

Batteries

Magnetism

pyridinic-graphene

Adv. Funct. Mater. 2021, 2101326 Adv. Energy Mater. 2022, 12, 2103010

CATRIN Czech Advanced

Technology and Research Institute

Sulphurized Graphene as Cathode for LSB

... just a short detour

Lithium-Sulfur Batteries (LSB)

- a promising alternative for energy storage
- high theoretical capacity (1672 mAh g⁻¹) and specific energy (2600 Wh kg⁻¹)
- sulfur is environmentally friendly and a key byproduct of the petroleum industry
- several bottlenecks hamper the practical development of the LSBs
 - sulfur's poor conductivity
 - large volume change
 - "shuttling effect" of lithium polysulfides (PSs), formed during the charge/discharge process. The dissolution of Li-PSs into the liquid electrolyte leads to low Coulombic effciency, poor sulfur utilization, fast capacity fading, and other parasitic reactions with the Li anode.

From: Energy Storage Materials 20, 55-70, 2019

Background and characterization

- highly and covalently sulfurized graphene cathode
- exploiting the nucleophilicity of polysulfide anions and the electrophilic centers in fluorographene
- Sulfur chains are immobilized by covalent bonding to graphene

GPS: C–F at ~1200 cm⁻¹ decreased (i.e., defluorination) 1580 cm⁻¹ band emerged (graphene lattice formation).

The new band at ~1150 cm⁻¹ demonstrates the development of covalent C–S bonds.

Electrochemical performance of the graphene-polysulfide cathode

High electrochemical reversibility for more than 50 cycles at 0.1 C (167 mA g⁻¹)

- Alkylhalide-like and elegant chemistry of fluorinated carbon matrices exploitation
- Effective pathway for the development and study of previously unexplored cathode materials for LSBs.
- ✓ Electrochemical cycling of the sulfurized-graphene material against lithium exhibited top-rated performance with only 5 wt. % of conductive additives and at low temperature of 25 °C

CATRIN Czech Advanced

Technology and Research Institute

N-doped Graphene as A Supercapacitor Electrode Material

Supercapacitor

Energy storage mechanism is a physical process of ion accumulation on electrode material + electrolyte ion separation

Quick and reversible charging/discharging

Applications: requiring many rapid charge/discharge cycles (circuit protection, combined with batteries for recuperation etc.)

Capacitor discharged

Collecto

Capacitor charged

Operational principle of electrostatic double-layer capacitors (EDLCs)

SC-GN3 synthesis via chemistry of fluorographene

SC-GN3 material is highly N-doped (16 at. %) graphene-related material synthesized from graphite fluoride via wet chemistry in one step.

After synthesis purification steps are needed.

SC-GN3 powder and example of 50 g packing of purified product.

Reaction scheme, XPS, MS-NMR, and FTIR characterization of SC-GN3.

Characterization of SC-GN3

Homogeneous distribution of nitrogens in the lattice.

Pyridinic Pyrrolic Graphitic

32.8

43.8

399

398

397

396

Characterization of SC-GN3

Characterization of SC-GN3

SEM image of N-doped graphene indicates on a few-layer structure.

TEM image of N-doped graphene

SC-GN3 testing

SC-GN3 is mixed with binder, electrodes are prepared.

Scheme of El-Cell used for testing (figures taken from el-cell.com).

GCD profiles and supercapacitor performance comparison of commercial porous high surface area carbon materials and N-doped graphene (at 2 A g $^{-1}$).

Energy and power density of SC-GN3 at increasing specific currents. SC-GN3 delivers energy densities of 200 Wh L^{-1} at a power of 2.6 kW L^{-1} and 143 Wh L^{-1} at 52 kW L^{-1} .

SC-GN3

GCD profiles and supercapacitor performance comparison of commercial porous carbon materials and N-doped graphene.

Stability of GN3 showing the GCD profiles at the beginning, mid-point, and end of a 10,000 cycle test.

SC-GN3

GCD profiles and supercapacitor performance comparison of commercial porous carbon materials and N-doped graphene.

- 1. Angewandte Chemie International Edition 58, 2397–2401 (**2019**).
- 2. Nature Communications 5, 5554 (**2014**).
- 3. Nano Energy 2, 764–768 (**2013**).

Current state-of-art comparison.

- 4. Science 341, 534–537 (**2013**).
- 5. Energy Environ. Sci. 9, 3135–3142 (**2016**).
- 6. Nature Nanotechnology 10, 313–318 (2015)

Itelcond s.r.l.

(=)

+ trans2Dchem -

Bar-Ilan

אוניברסיטת בר־אילו

new material with record

energy density:	200 Wh/L
power density:	50 kW/L

Market Opportunity Mini/Micro e-mobility

	BATTERIE	ENERGY-C
CONSTRUCTION	2 x 12V 75 Ah in series	6 x 5000F in series
RATED VOLTAGE	24V	24V
EFFECTIVE STORAGE ENERGY	1.800Wh	40Wh
RANGE	6 ~ 8h	700 meters (ca. 12 min)
CHARGE TIME	ca.4h	<2min
VOLUME	161	51
WEIGHT	53kg	4,4kg (in future 2kg)
NUMBER OF CYCLES	~1000 cycles	>500.000 cycles

trans2dchem.com

Example of available devices

AVX PrizmaCap (4 Wh/L), rel. 7/21

Skeleton SkelCap (16 Wh/L), rel. 9/21

En. Environ. Sci. 15, 740, 2022

Fluorograhene

perspective material for scalable synthesis of graphene derivatives for wide range of applications.

TECHNICAL | IT4INNOVATIONS JNIVERSITY | NATIONAL SUPERCOMPUTING DF OSTRAVA | CENTER

Acknowledgement

Aristeidis Bakandritsos

Radek Zbořil

Kolleboyina Jayaramulu (now IIT Jammu)

Dimitris Chronopoulos (now Uni. Of Athens)

Petr Jakubec

Iosif Tantis (now Cornell)

Yevgen Obratsov

Vojtěch Kupka

Miroslav Medveď

Vítězslav Hrubý

Veronika Šedajová (now Cambridge)

Tomáš Zedníček

Luca Primavesi

Graphene acid available at https://graphene-derivatives.com/

General info: TRANS2DCHEM.ORG

European

Research

Council

NNOVATION

erc

Funded by the European Union

Contact: michal.otyepka@upol.cz